Temporada de webinars

Diseño de acero

El uso de perfiles laminados en la construcción: aspectos generales y principales ventajas

Ing. Daniel Silvério

CTS / Commercial Technical Support - ArcelorMittal International (Brasil)

Organiza

Patrocinan

Consideraciones iniciales

- Nos complace poder charlar a la comunidad técnica costarricense (Arquitectos, Ingenieros, Constructores, Profesores, Estudiantes y demás).
- El objetivo principal de la conferencia es que el auditorio pueda conocer un poco más acerca de estos productos, familiarizándose con aspectos referentes a producción, normas y entendiendo mejor sus posibles alcances.
- Se espera que el asistente pueda ampliar su visión acerca de la construcción en acero, conociendo más las ventajas de estos sistemas constructivos.

Agenda de la conferencia

Parte 1 – Ing. Carlos Berrocal

- ArcelorMittal: quienes somos & actuación en Costa Rica
- Proceso productivo

Parte 2 – Ing. Daniel Silvério

- •Visión general acerca de las normativas (EUR x EEUU) → Geometría x Calidad
- ·Las ventajas de la construcción en acero estructural
- Aceros de Alta Resistencia según la norma ASTM A913 (HISTAR)

Normas para perfiles laminados

Suministro regular en Latinoamérica:

- •Normas Americanas → ASTM
- •Normas Europeas → EN

Designation: A6/A6M - 16

Standard Specification for General Requirements for Rolled Structural Steel Bars, Plates, Shapes, and Sheet Piling¹

This standard is issued under the fixed designation A6/A6M; the number immediately following the designation indicates the year original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

A913/A913M

ΔR71/ΔR71M

This standard has been approved for use by agencies of the U.S. Department of Defense.

1. Scopes

1.1 This general requirements specification² covers a group of common requirements that, unless otherwise specified in the applicable product specification, apply to rolled structural steel bars, plates, shapes, and sheet piling covered by each of the following product specifications issued by ASTM:

MOSAIDSA	Carbon Structural Steel
A131/A131M	Structural Steel for Ships
A242/A242M	High-Strength Low-Alloy Structural Steel
A283/A283M	Low and Intermediate Tensile Strength Carbon Steel Plates
A328/A328M	Steel Sheet Piling
A514/A514M	High-Yield Strength, Quenched and Tempered Alloy Steel Plate Suitable for Welding
A529/A529M	High-Strength Carbon-Manganese Steel of Structural Qual- ity
A572/A572M	High-Strength Low-Alloy Columbium-Vanadium Steel
A573/A573M	Structural Carbon Steel Plates of Improved Toughness
A588/A588M	High-Strength Low-Alloy Structural Steel with 50 ksi (345 MPa) Minimum Yield Point to 4 in. [100 mm] Thick
A633/A633M	Normalized High-Strength Low-Alloy Structural Steel Plates
A656/A656M	Hot-Rollad Structural Steel, High-Strength Low-Alloy Plate with Improved Formability
A690/A690M	High-Strength Low-Alloy Steel H-Piles and Sheet Piling for Use in Marine Environments
A709/A709M	Carbon and High-Strength Low-Alloy Structural Steel Shapes, Plates, and Bars and Quenched-and-Tempered Alloy Structural Steel Plates for Bridges
A710/A710M	Age-Hardening Low-Carbon Nickel-Copper-Chromium-Mo- lybdenum-Columbium Alloy Structural Steel Plates
A769/A769M	Carbon and High-Strength Electric Resistance Welded Stee Structural Shapes
A786/A786M	Rolled Steel Floor Plates
A827/A827M	Plates, Carbon Steel, for Forging and Similar Applications
A829/A829M	Plates, Alloy Steel, Structural Quality
A830/A830M	Plates, Carbon Steel, Structural Quality, Furnished to Chemical Composition Requirements
A857/A857M	Steel Sheet Piling, Cold Formed, Light Gage
A871/A871M	High-Strength Low-Alloy Structural Steel Plate With Atmo- spheric Corrosion Resistance

¹ This specification is under the jurisdiction of ASTM Committee A01 on Steel. Stainless Steel and Related Alloys and is the direct responsibility of Subcommittee A01.02 on Structural Steel for Bridges, Buildings, Rolling Stock and Ships. Current edition approved May 1, 2016. Published May 2016. Originally approved in 1949. Last previous edition approved in 2014 as A6/A6M - 14. DOI: 10.1520/A0006_A0006M-16.

High-Strength Low-Alloy Steel Shapes of Produced by Quenching and Self-Tern

High-Strength Low-Alloy Structural Steel spheric Corrosion Resistance
High-Strength Low-Alloy Structural Steel A945/A945M Carbon and Restricted Sulfur for Impre

Formability, and Toughness Fusion Bonded Epoxy-Coated Structural Sheet Piling Steel for Structural Shapes for Use in Bu

Structural Steel with Low Yield to Tensile Buildings High-Strength Low-Alloy Structural Steel A1066/A1066M

1.2 Annex A1 lists permitted variations in mass (Note 1) in SI units. The values listed conversions of the values in Tables 1 to 31 in instead, rounded or rationalized values. Confor-Al is mandatory when the "M" specification

NOTE 1-The term "weight" is used when inch-po standard; however, under SI, the preferred term is "ma

- 1.3 Annex A2 lists the dimensions of some
- 1.4 Appendix X1 provides information on a of structural products.
- 1.5 Appendix X2 provides information on the tensile properties in plates and structural shap
- 1.6 Appendix X3 provides information on 1
- 1.7 Appendix X4 provides information on plates, including suggested minimum inside
- 1.8 This general requirements specification group of supplementary requirements that ar several of the above product specifications as in Such requirements are provided for use w testing or additional restrictions are required b and apply only where specified individually order.
- 1.9 In case of any conflict in requirements, t of the applicable product specification prevail o general requirements specification.

ILNAS-EN 10365:2017

Hot rolled steel channels, I and H sections - Dimensions and masses

Profilés en U en aciers laminés à chaud, poutrelles I et H -Dimensions et masses

Warmgewalzter U-Profilstahl, I- und H-Träger - Maße und Masse

² For ASME Boiler and Pressure Vessel Code applications, see related Specification SA-6/SA-6M in Section II of that Code

Normas para perfiles laminados

NORMAS DE DEFINICIÓN GEOMÉTRICA

Series Dimensiones
Tolerancias
Surface Condition

NORMAS DE CALIDAD

Composición Química Propiedades Mecánicas

Normas de Definición Geométrica

DESCRIPCIÓN	EEUU	EUROPA
SERIES Y DIMENSIONES	ASTM A6/A6M-16	EN 10365:2017
TOLERANCIAS	ASTM A6/A6M-16	EN 10034 (I/H) o EN 10024 (alas inclinadas)
SURFACE CONDITION	ASTM A6/A6M-16	EN 10163-3:2004

Series y dimensionales

EN 10365:2017

- Secciones con patines paralelos IPE
- •Vigas de alas anchas HE

EN 10365:2017 (E)

1 Scope

This European standard specifies the nominal dimensions and masses of the hot rolled steel channels, I and H sections.

The following shapes are covered by this standard:

Sections:

- Parallel flange I sections IPE;
- Wide flange beams HE;
- Extra wide flange beams HL and HLZ;
- Wide flange columns HD;
- Wide flange bearing piles HP and UBP;
- Universal beams UB;
- Universal columns UC;
- Taper flange I sections IPN and J.

Channels:

- Parallel flange channels UPE and PFC;
- Taper flange channels UPN, U and CH.

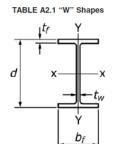
These requirements do not apply to hot rolled steel channels, I and H sections from stainless steel.

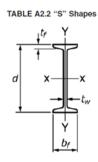
Series y dimensionales

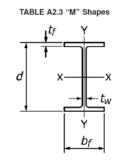
ASTM A6/A6M-16

•American Wide Flange Beams - W

Bearing Piles - HP




Designation: A6/A6M - 16


Standard Specification for General Requirements for Rolled Structural Steel Bars, Plates, Shapes, and Sheet Piling¹

This standard is issued under the fixed designation A6/A6M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the U.S. Department of Defense.

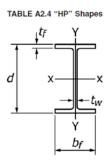


TABLE A2.5 "C" Shapes

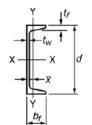


TABLE A2.6 "MC" Shapes

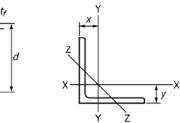
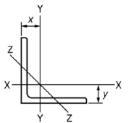



TABLE A2.7 "L" Shapes (Equal Legs)^A

Series y dimensionales

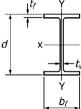


TABLE A2.1 Continued

Designation (Nominal			Flar	ige		Designation [Nominal			Flai	nge	Web
Depth in Inches and Weight in Pounds per Linear Foot)	Area A, in. ²	Depth d, in.	Width b _r , in.	Thick- ness t_p in. ^A	Web Thickness t_{w} , in. ^A	Depth in Milli- metres and Mass in Kilo- grams per Metre]	Area A, mm ²	Depth d, mm	Width b _r , mm	Thick- ness, t _h mm ^A	Thick- ness t _w , mm ^A
W8 × 15	4.44	8.11	4.015	0.315	0.245	W200 x 22.5	2 860	206	102	8.0	6.2
× 13	3.84	7.99	4.000	0.255	0.230	× 19.3	2 480	203	102	6.5	5.8
× 10	2.96	7.89	3.940	0.205	0.170	× 15.0	1 910	200	100	5.2	4.3
W6 × 25 × 20 × 15	7.34 5.87 4.43	6.38 6.20 5.99	6.080 6.020 5.990	0.455 0.365 0.260	0.320 0.260 0.230	W150 × 37.1 × 29.8 × 22.5	4 740 3 790 2 860	162 157 152	154 153 152	11.6 9.3 6.6	8.1 6.6 5.8
W6 × 16	4.74	6.28	4.030	0.405	0.260	W150 × 24.0	3 060	160	102	10.3	6.6
× 12	3.55	6.03	4.000	0.280	0.230	× 18.0	2 290	153	102	7.1	5.8
× 9	2.68	5.90	3.940	0.215	0.170	× 13.5	1 730	150	100	5.5	4.3
× 8.5	2.52	5.83	3.940	0.195	0.170	× 13.0	1 630	148	100	4.9	4.3
W5 × 19 × 16	5.54 4.68	5.15 5.01	5.030 5.000	0.430 0.360	0.270 0.240	W130 × 28.1 × 23.8	3 590 3 040	131 127	128 127	10.9 9.1	6.9 6.1
W4 × 13	3.83	4.16	4.060	0.345	0.280	W100 × 19.3	2 470	106	103	8.8	7.1

A Actual flange and web thicknesses vary due to mill rolling practices; however, permitted variations for such dimensions are not addressed.

ILNAS-EN 10365:2017

Table 1 — Parallel flange I sections IPE

Designation						
	G	h	b	s	t	A
	kg/m	mm	mm	mm	mm	cm ²
IPE AA 80	4,9	78,0	46,0	3,2	4,2	6,3
IPE A 80	5,0	78,0	46,0	3,3	4,2	6,4
IPE 80	6,0	80,0	46,0	3,8	5,2	7,6
IPE AA 100	6,7	97,6	55,0	3,6	4,5	8,6
IPE A 100	6,9	98,0	55,0	3,6	4,7	8,8
IPE 100	8,1	100,0	55,0	4,1	5,7	10,3

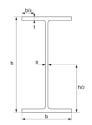
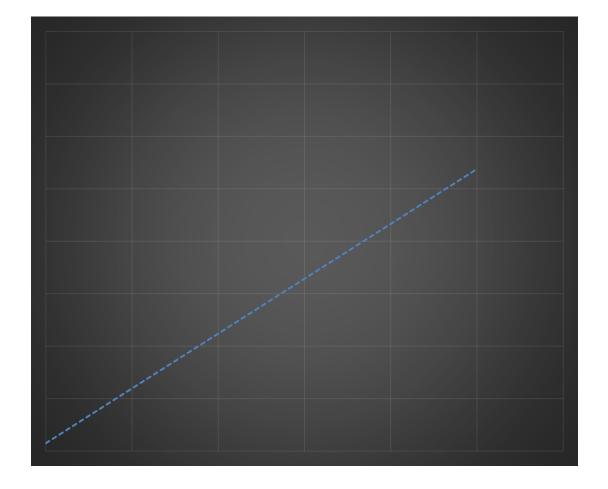


Figure 1 — IPE, HE, HL, HD, HP, UBP, UB and UC parallel flange sections



MÁXIMOS DESVÍOS ADMISIBLES PARA LAS DIMENSIONES

- Altura
- •Ancho
- •Espesores
- •Masa
- Rectitud
- Paralelismo

ALTURA

	EEUU (W y HP)	EUROPA
≤ 180mm		+3mm / -2mm
180mm < h ≤ 400mm		+4mm / -2mm
400mm < h ≤ 700mm	+3.2mm / -3.2mm	+5mm / -3mm
> 700mm		+5mm / -5mm

ANCHO

	EEUU (W y HP)	EUROPA
≤ 110mm		+4mm / -1mm
110mm < h ≤ 210mm		+4mm / -2mm
210mm < h ≤ 325mm	+6.4mm / -4.8mm	+4mm / -4mm
> 325mm		+6mm / -5mm

ESPESORES DEL ALMA

	EEUU (W y HP)	EUROPA
< 7mm		± 0,7mm
7mm ≤ tw (s) < 10mm		± 1,0mm
10mm ≤ tw (s) < 20mm	NO DEFINIDO	± 1,5mm
20mm ≤ tw (s) < 40mm		± 2,0mm
40mm ≤ tw (s) < 60mm		± 2,5mm
> 60mm		± 3,0mm

ESPESORES DE LOS PATINES

	EEUU (W y HP)	EUROPA
< 6,5mm		+1,5mm / -0,5mm
6,5mm ≤ tw (s) < 10mm		+2,0mm / -1,0mm
10mm ≤ tw (s) < 20mm	NO DEFINIDO	+2,5mm / -1,5mm
20mm ≤ tw (s) < 30mm	NO DEFINIDO	+2,5mm / -2,0mm
30mm ≤ tw (s) < 40mm		+2,5mm / -2,5mm
40mm ≤ tw (s) < 60mm		+3,0mm / -3,0mm
> 60mm		+4,0mm / -4,0mm

RESUMEN → Tabla 14 del Catálogo de Perfiles de ArcelorMittal

Tolérances de laminage - poutrelles

Table 14

Rolling tolerances - beams

Tabelle 14

Walztoleranzen - Träger

Profilés Sections Profile		IPE HE HD UB/UC/UBP HL HLZ HP (EN) (incl. dimensions ArcelorMittal standard)		HE J HD JC/UBP HL HL HLZ P(EN) Mensions (incl. dimensions		S		B1, B2 G≤ G ₁₈₈₂		B1, B2, B3, SZ1, SZ2 K1, K2, K3, K4, K5 G > G ₁₈₈₂			
Normes / Standards / N	lormen	EN 10034	4: 1993 ⁴⁾	EN 10024	4: 1995	ASTM A 6	5/A 6M - 16	ASTM A 6	i/A 6M - 16	GOST 260	20-83	STO ASCHN	1 20-93
- T	h (mm) [n.]	h≤180 180-d>≤400 400-d>≤700 b>700	+3/-2 +4/-2 +5/-3 +5/-5	h≤200 200 <h≤400 h>400</h≤400 	±2 ±3 ±4	+4/-3 [+ ¹ / ₈ / - ¹ / ₈]		75shs180 180chs360 360chs610 [3shs7] [7chs14] [14chs24]	±2 +3/-2 +5/-3 [+ ³ / ₃₂ /- ¹ / ₁₆] [+ ¹ / ₈ /- ³ / ₃₂] [+ ³ / ₁₆ /- ¹ / ₈]	h≤120 120 <h<380 380≤h<580 h≥580</h<380 	±2,0 ±3,0 ±4,0 ±5,0	h≤120 120 <h≤380 380<h≤580 b>580</h≤580 </h≤380 	±2,0 ±3,0 ±4,0 ±5,0
Largeur d'aile Flange width Flanschbreite	b (mm) [in.]	b≤110 110-b≤210 210-b≤325 b>325	+4/-1 +4/-2 +4/-4 +6/-5	bs75 75 <bs100 100<bs125 b>125</bs125 </bs100 	±1,5 ±2 ±2,5 ±3	+6/-5 [+ ¹ / ₄ /- ³ / ₁₆]		75shs180 180 <hs360 360<hs610 [3shs7] [7<hs14] [14<hs24]< td=""><td>±3 ±4 ±5 [±¹/₆] [±⁵/₃₂] [±³/₁₆]</td><td>b≤120 b>120</td><td>±2,0 ±3,0</td><td>h≤120 h>120</td><td>±2,0 ±3,0</td></hs24]<></hs14] </hs610 </hs360 	±3 ±4 ±5 [± ¹ / ₆] [± ⁵ / ₃₂] [± ³ / ₁₆]	b≤120 b>120	±2,0 ±3,0	h≤120 h>120	±2,0 ±3,0

Normas de Calidad

ASTM

•A36

•A572

•A992

•A709

•A588

•A913

Segmentación

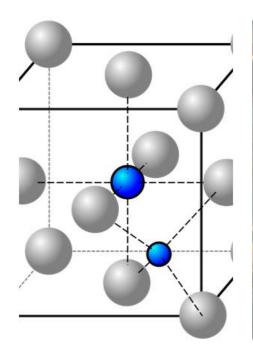
EN 10025

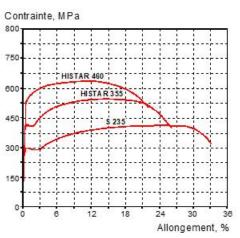
•Section 2

•Section 4

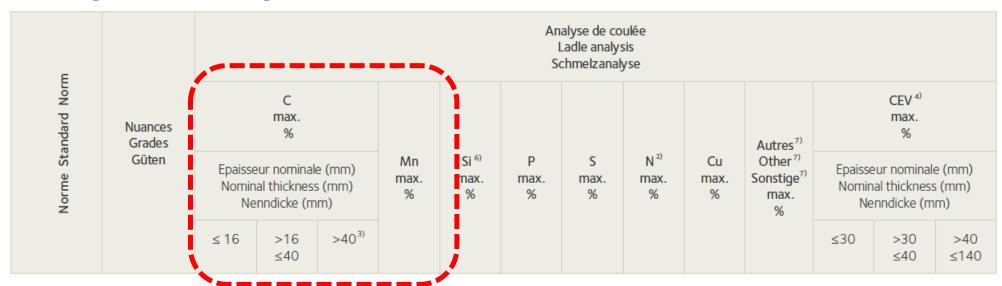
•Section 5

Norma única

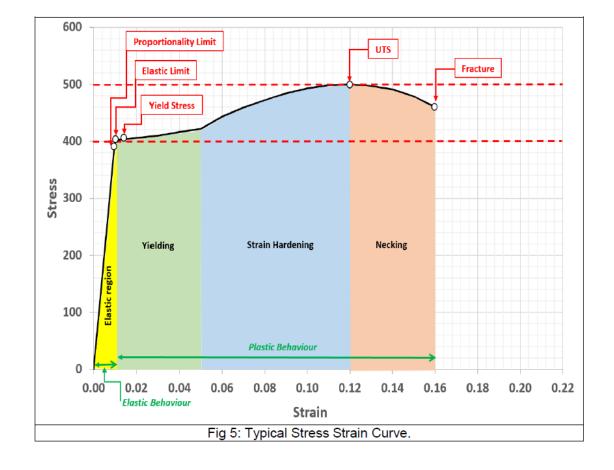



Normas de Calidad

MANEJAR LA COMPOSICIÓN QUÍMICA PARA LOGAR BUENAS PROPIEDADES MECÁNICAS



Composición química



Propiedades Mecánicas

PUNTOS FUNDAMENTALES

- Límite de cedencia → fy (grado de acero)
- •Ductilidad → Elongación
- •Tenacidad → CVN

Grados de acero

	Groupe acier Steel group Stahlgruppe	
S	acier de construction / structural steel / Baustahl	

	Caractéristiques mécaniques Mechanical characteristics Mechanische Eigenschaften
XXX	limite élastique min. en MPa min. yield strength in MPa mind. Streckgrenze in MPa

Caractéristiques mécaniques – groupe 1 Mechanical characteristics – group 1 Mechanische Eigenschaften – Gruppe 1					
résilience / notch toughness / Kerbschlagarbeit					
min. 27 J	min. 40 J	Temp. °C			
JR	-	20			
JO	-	0			
J2	K2	-20			

EN 10025-2:2019 S 355 J2

ASTM A913 gr.50

 $50 \times \sim 6,9 = 345 \, MPa$

Ejemplos de designación

DESIGNACIONES TÍPICAS

• EN

•ASTM

	EUROPA	EEUU
Norma Def. Geométrica	EN 10365:2017	ASTM A6/A6M-16
Medida	HE 200 M	W8x8x67(W200x200x100)
Norma de Calidad	EN 10025-2:2019	ASTM A992
Grado del Acero	S355 JR	fy=50 ksi =345 MPa

Equivalencia entre estándares

Equivalencia no es igualdad

Aciers de construction / Structural steels / Baustähle													
	Normes antérieures / Previous standards / Frühere Normen												
2019	EN 10025: 1990 + A1: 1993	EN 10025: 1990	NF A 35-501	DIN 17100	BS4360	UNE 36 080 NBN A21-101	UN I 7070	SS 14	NS 12 101	ÖNORM M1316	ASTM	CSA G 40- 21	JIS G 3101 JIS G 3106
S235JR S235J0	S235JR S235JRG1 S235JRG2 S235J0	Fe360BFU Fe360BFN Fe360C	E24-2	St37-2 Ust37-2 RSt37-2 St37-3U	40B 40C	AE235B AE235B-FU AE235B-FN AE235C	Fe360B	13 11-00 13 12-00	NS 12 120 NS 12 122 NS 12 123 NS 12 124	USt 360 B RSt 360 B St 360 C			
\$235J2	S235J2G3 S235J2G4	Fe360D1 Fe360D2	E24-4	St37-3N	40D	AE235D	Fe360D		NS 12 124	St 360 CE St 360 D			
S275JR S275J0 S275J2	\$275JR \$275J0 \$275J2G3 \$275J2G4	Fe430B Fe430C Fe430D1 Fe430D2	E28-2 E28-3 E28-4	St44-2 St44-3U St44-3N	43B 43C 43D	AE255B AE255C AE255D	Fe430B Fe430C Fe430D	14 12-00 14 14-00 14 14-01	NS 12 142 NS 12 143 NS 12 143	St 430 C St 430 CE	A 36	260 W	SS 400 SM 400 A/B/C
\$355JR \$355J0 \$355J2 \$355K2	\$355JR \$355J0 \$355J2G3 \$355J2G4 \$355K2G3 \$355K2G4	Fe510B Fe510C Fe510D1 Fe510D2 Fe510DD1 Fe510DD2	E36-2 E36-3	St52-3U St52-3N	50B 50C 50D 50DD	AE355B AE355C AE355D AE355-DD	Fe510B Fe510C Fe510D	21 32-01 21 34-01	NS 12 153 NS 12 153	St 510 C St 510 D	A572 Gr.50 A992 Gr.50	350W	SS 490
S460JR S460J0 S460J2 S460K2											A572 Gr.65 A913 Gr.65		
S500J0											A913 Gr.70		
											A913 Gr.80		

¿POR QUÉ DEBO UTILIZAR PERFILES LAMINADOS?

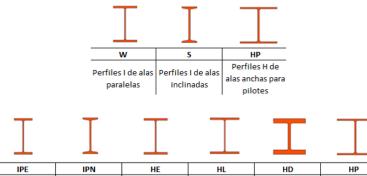
Alto control tecnológico en producción

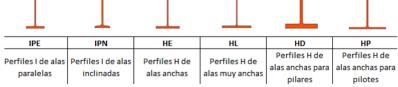
- Buenas propiedades Mecánicas
- Alta confiabilidad
- Trazabilidad
- Óptima Relación Resistencia x peso
- Excelente Ductilidad y Tenacidad → buena performance frente a cargas de origen dinámico



Elevada precisión

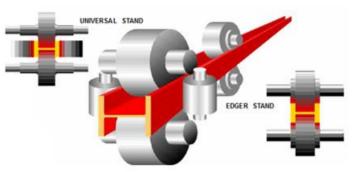
- Molino
- Taller

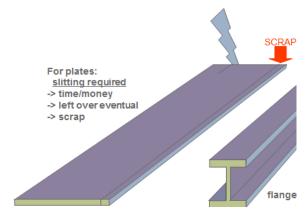




Amplia gama

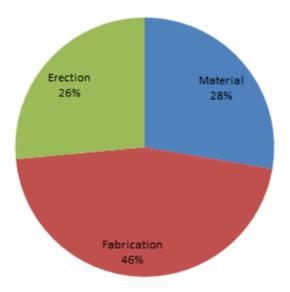
- 4" (100mm) ~ 44" (1100mm)
- Espesores de hasta 140mm para los patines
- Pesos unitarios de hasta 1400 Kg/m
- ASTM A6: W, S, HP
- EN: IPE, HE, HD



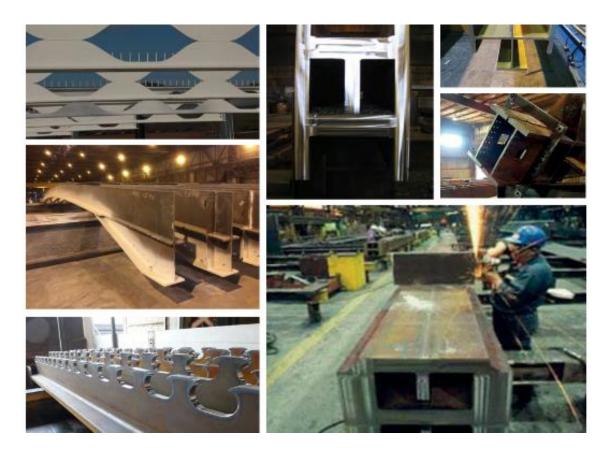


Menores costos de fabricación

USD 300 ~ 500 / MT



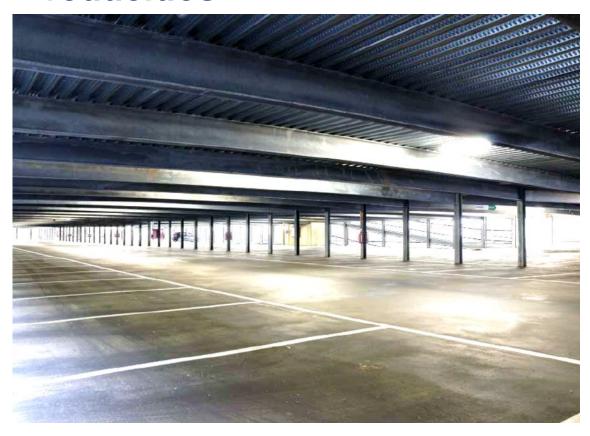
Cost Breakdown of Erected Structural Steel



Versatilidad geométrica

Flexibilidad geométrica global

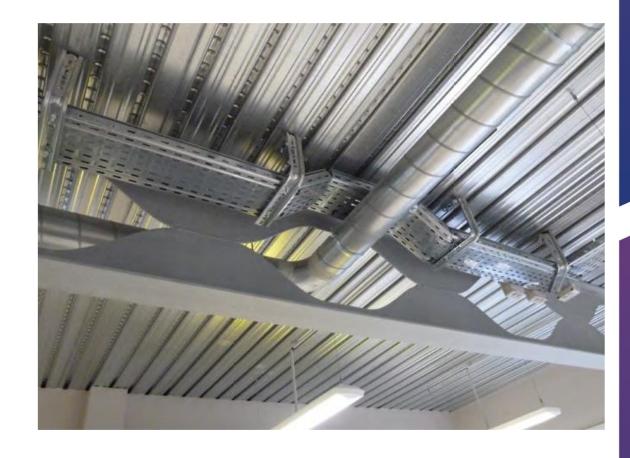
Excelente performance estética



Luces amplias y peraltes reducidos

Ahorro de espacio en planta

Customerfriendly car parks shall have no columns in the parking spaces! ⇒ long spans ⇒ flexible interior arrangements



Buena interface con las demás disciplinas

Disminución de apuntalamientos y reducción de residuos

Adaptabilidad

- Arreglos
- Refuerzos / Expansiones

Ligereza

- Reducción de la carga sísmica
- Alivio de cargas en las cimentaciones



Velocidad de Montaje

- Luces más grandes nos brindan una menor cantidad de piezas
- Utilización de uniones apernadas in situ
- Precisión en Molino y taller
- Reducción/eliminación de apuntalamientos y encofrados
- Facilidad de manejar la interface con las demás disciplinas (pisos, fachadas, cerramientos, tuberías, etc.)

Mini Sky City (China) 10000 toneladas 57 pisos 19 días

Sostenibilidad

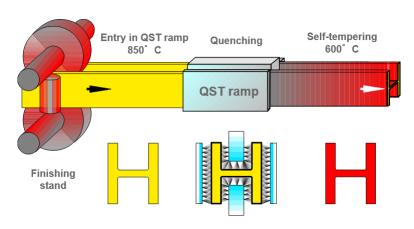
- Efectiva Reciclabilidad (Cradle-to-Cradle Life Cycle)
- Bajo consumo de agua en el proceso productivo
- Baja generación de residuos a lo largo de toda cadena
- Reducción de la huella de Carbono

- Taza de reciclabilidad promedio → 98%
- Más de 90% del contenido → Chatarra

Los perfiles son amigables al medio ambiente

- EPD
- LEED

¿TODAS ESTAS VENTAJAS TODAVÍA NO DAN BASTO?



HISTAR (High Strength ArcelorMittal Steel)

- Mediados de los años 1990 → innovación en el proceso de producción: el QST
- Proceso "In-Line": laminación termo mecánica + templado y auto revenido
- Refino de la estructura de granos
- Alta Resistencia Mecánica
- Buena ductilidad, tenacidad y soldabilidad

QST (Quenching and Self-Tempering)

- Alta resistencia mecánica: grados 50, 60, 65, 70 y 80 ksi
- Buena soldabilidad: no es necesario soldar con precalentamiento, siempre y cuando electrodos con bajo hidrógeno (H8) sean utilizados
- Adecuada Tenacidad: ASTM A913 determina un nivel promedio mínimo de tenacidad CVN de 54J a temperatura de 21°C, lo que no es un requisito estándar en las normas ASTM A36, A572, ni en la A992

GRADO	fy,min	fu,min	Emin	Emin	CE max	CVN
			200mm	50mm		ASTM A673
50	345 MPa	450 MPa	18%	21%	0.38%	54 J a 21°C
60	415 MPa	520 MPa	16%	18%	0.40%	54 J a 21°C
65	450 MPa	550 MPa	15%	17%	0.43%	54 J a 21°C
70	485 MPa	620 MPa	14%	16%	0.45%	54 J a 21°C
80	550 MPa	655 MPa	13%	15%	0.49%	54 J a 21°C

MEJOR SOLDABILIDAD → Suavización de las demandas de precalentamiento

- Estricto control del CE
- Material de aporte con baja taza de deposición de Hidrógeno (H8)

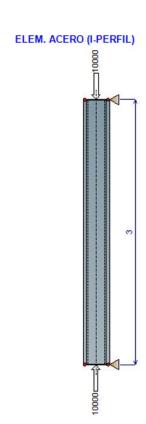
AW\$ D1.1, Minimum preheat temperatures

	Minimum preheat temperatures, °F [°C]				
Thickness, in. [mm]	A913				
	Grade 50 [345]	Grade 65 [450]	Grade 70 [485]		
1/8 to 3/4 incl. [3 to 20 incl.]	32 [0]*	32 [0]*	50 [10]		
Over 3/4 to 1-1/2 incl. [Over 20 to 38 incl.]	32 [0]*	32 [0]*	150 [65]		
Over 1-1/2 to 2-1/2 incl. [Over 38 to 65 incl.]	32 [0]*	32 [0]*	225 [110]		
Over 2-1/2 [Over 65]	32 [0]*	32 [0]*	300 [150]		

^{*}Requires low hydrogen diffusible electrode, H8 or better. For metal at temperatures below 32°F [0°C], minimum preheat is 70°F [20°C].

MAYOR RESISTENCIA MECÁNICA -> OPTIMIZACIÓN DE ESTRUCTURAS

- Estricto control del CE
- Material de aporte con baja taza de deposición de Hidrógeno (H8)


ORIGINAL	ASTM A913	ASTM A913	ASTM A913
(gr.50)	(gr.65)	(gr.70)	(gr.80)
W14x370	W14x311	W14x283	W14x257
(W360x551)	(W360x463)	(W360x421)	(W360x382)
100%	84%	76 %	69%

-31%

ALGUNOS CASOS EXITOSOS

- Puente Metro Mall / Fuerzas Armadas | Tegucigalpa (Honduras)
- Edificio ACAP | Santiago de los Caballeros (República Dominicana)
- Torre Atrio | Bogotá (Colombia)

Consideraciones finales

PRÓXIMAMENTE...

- Sistemas de piso (AISC 360-16)
- Sistemas Sismorresistentes (AISC 341-16)
- Conexiones precalificadas a momento (AISC 358-16)

ANSI/AISC 360-16 An American National Standard

Specification for Structural Steel Buildings

July 7, 2016

Supersedes the Specification for Structural Steel Buildings dated June 22, 2010 and all previous versions of this specification

Approved by the AISC Committee on Specifications

ANSI/AISC 341-16 An American National Standard

Seismic Provisions for Structural Steel Buildings

Supersedes the Seismic Provisions for Structural Steel Buildings dated June 22, 2010, and all previous versions

Approved by the AISC Committee on Specifications

ANSI/AISC 358-16 ANSI/AISC 358s1-18 An American National Standard

Prequalified Connections

for Special and Intermediate Steel Moment Frames for Seismic Applications, including Supplement No. 1

(includes 2018 supplement)

Approved by the Connection Prequalification Review Panel

AMERICAN INSTITUTE OF STEEL CONSTRUCTION 130 East Randolph Street, Suite 2000 Chicago, Illinois 60601-6204

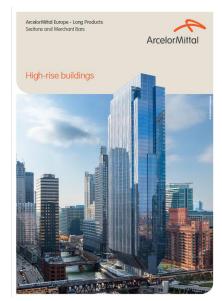
¡Muchas gracias por su atención!

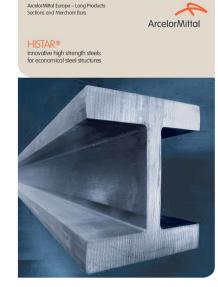
DESCARGA DE MATERIAL DE APOYO

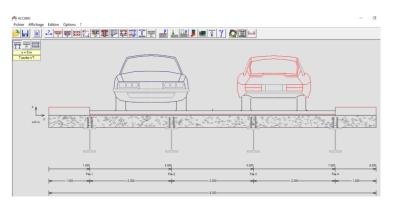
Catálogos Folletos Softwares de prediseño

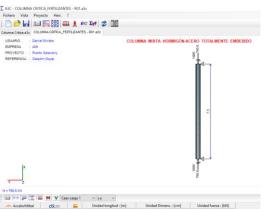
sections.arcelormittal.com

INFORMACIÓN DE CONTACTO


Ing. Daniel Silvério daniel.Silverio@arcelormittal.com.br +55 11 94511 6438







Preguntas y Respuestas

